interview_c_base
const
第一种情况:
const int a = 8;
int const b = 9;
// a = 7; /* ERROR */
这两种写法是一样的,表示a和b都是常量,不可改变,所以一定要给变量初始化,否则之后就不能再进行赋值了
第二种情况:
const int *p;
or
int const *p;
int a = 9;
int b = 10;
p = &a;
// *p = 8; /* ERROR */
a = 8;
p = &b;
常量指针,表示p指向的内容是常量。需要注意两点:
常量指针指不能通过这个指针改变变量的值,但是还是可以通过其他的引用来改变变量的值的。
常量指针指不能通过这个指针改变变量的值,但是这并不是意味着指针本身不能改变,常量指针可以指向其他的地址。
第三种情况:
int a = 9;
int b = 10;
int * const p = &a;
*p = 8;
// p = &b; /* ERROR */
指针常量,表示指针p是个常量,它本身不可改变。需要注意的是,指针本身不可变,但指向的对象可变。
第四种情况:
int a = 9;
const int * const p = &a;
a = 8;
指向常量的指针常量,表示指针本身不可变,也不能通过指针修改所指向地址的内容。需要注意的是,依然可以通过其他引用修改该指针指向地址的内容。
进程的内存布局
stack
存放局部变量
head
存放由malloc分配
data
存放初始化的全局变量
bss
存放未初始化的全局变量
text
存放代码
需要注意:
未初始化的全局变量,相当于初始化为零的全局变量,存放 bss section
字符串存放在 text section
union
共用体的所有成员占用同一段内存,修改一个成员会影响其余所有成员
共用体占用的内存等于最长的成员占用的内存
## 注意:PC机是小端模式
$ cat test.c
#include <stdio.h>
union data{
int n;
char ch;
short m;
};
int main(){
union data a;
printf("%d, %d\n", sizeof(a), sizeof(union data));
a.n = 0x40;
printf("%X, %c, %hX\n", a.n, a.ch, a.m);
a.ch = '9';
printf("%X, %c, %hX\n", a.n, a.ch, a.m);
a.m = 0x2059;
printf("%X, %c, %hX\n", a.n, a.ch, a.m);
a.n = 0x3E25AD54;
printf("%X, %c, %hX\n", a.n, a.ch, a.m);
return 0;
}
$ ./a.out
4, 4
40, @, 40
39, 9, 39
2059, Y, 2059
3E25AD54, T, AD54
大小端模式
大端模式,是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中
小端模式,是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中
下面以unsigned int value = 0x12345678
为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]
来表示value
buf[0]
0x4000
0x78
0x12
buf[1]
0x4001
0x56
0x34
buf[2]
0x4002
0x34
0x56
buf[3]
0x4003
0x12
0x78
用C语言实现冒泡排序
#include <stdio.h>
#define SIZE 5
int main(int argc, char **argv)
{
int test[SIZE] = {9, 50, 3, 250, 8};
int i, j, tmp;
for(j=1; j<SIZE; j++)
{
for(i=0; i<(SIZE-j); i++)
{
if(test[i] > test[i+1])
{
tmp = test[i];
test[i] = test[i+1];
test[i+1] = tmp;
}
}
}
for(i=0; i<SIZE; i++)
printf("%d ", test[i]);
return 0;
}
不调用库函数,实现strcpy函数的功能
#include <stdio.h>
char *strcpy(char *dest, const char *src)
{
char *tmp;
if(dest == NULL || src == NULL)
return NULL;
tmp = dest;
while((*dest++ = *src++) != '\0');
return tmp;
}
int main(int argc, char **argv)
{
char *src = "test";
char dest[1024];
strcpy(dest, src);
printf("%s\n", dest);
return 0;
}
用C语言实现判断大小端的程序
#include <stdio.h>
union data {
unsigned int i;
unsigned char c;
};
int main(int argc, char **argv)
{
union data test;
test.i = 0x1;
if(test.c == 0x01)
printf("Little-endian\n");
else
printf("Big-endian\n");
return 0;
}
不调用库函数,实现atoi函数的功能,字符串转整形
#include <stdio.h>
#include <limits.h>
int myatoi(char *s)
{
char sign = '+';
int tmp = 0;
unsigned int value = 0;
while(*s == ' ')
*s++;
if (*s == '+' || *s == '-')
sign = *s++;
while (*s >= '0' && *s <= '9') {
tmp = *s++ - '0';
value = value * 10 + tmp;
if (value >= INT_MAX)
return sign == '+' ? INT_MAX : INT_MIN;
}
return sign == '+' ? (int)value : -(int)value;
}
int main(int argc, char *argv[])
{
printf("str %s, INT_MAX %d, INT_MIN %d\n", argv[1], INT_MAX, INT_MIN);
printf("int = %d\n", myatoi(argv[1]));
return 0;
}
用C语言实现字符串反转功能
#include <stdio.h>
#include <string.h>
void char_swap(char *a, char *b)
{
char tmp;
tmp = *a;
*a = *b;
*b = tmp;
}
void string_reverse(char *s)
{
int len = strlen(s);
int i;
printf("str %s\n", s);
for (i = 0; i < len/2; i++)
char_swap(&s[i], &s[len - 1 - i]);
printf("str %s\n", s);
}
int main(int argc, char *argv[])
{
char buf[] = "123yabc";
string_reverse(buf);
return 0;
}
获得字符频次唯一的最小删除次数
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define LETTER_NUM 26
#define STR_MAX_NUM 100001
int compare_fun(const void *a, const void *b)
{
return (*(int *)b - *(int *)a);
}
int min_delete(char *s)
{
int letter[LETTER_NUM] = {0};
int flags[STR_MAX_NUM] = {0};
int len = strlen(s);
int min_delete_bytes = 0;
int i;
for (i=0; i<len; i++)
letter[*s++ - 'a']++;
qsort(letter, LETTER_NUM, sizeof(int), compare_fun);
for (i=0; i<LETTER_NUM; i++) {
if (letter[i] == 0)
break;
if (flags[letter[i]] == 0) {
flags[letter[i]] = 1;
continue;
}
min_delete_bytes++;
letter[i]--;
if (letter[i] == 0)
break;
if (flags[letter[i]] == 0) {
flags[letter[i]] = 1;
continue;
}
}
return min_delete_bytes;
}
int main(int argc, char *argv[])
{
printf("min_delete_bytes %d\n", min_delete(argv[1]));
return 0;
}
亲密字符串
#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>
#define LETTER_NUM 26
int compare_fun(const void *a, const void *b)
{
return (*(int *)b - *(int *)a);
}
bool buddyStrings(char *a, char *b)
{
int a_len = strlen(a);
int b_len = strlen(b);
int i, count = 0, diff1_i, diff2_i;
int letter_freq[LETTER_NUM] = {0};
if ((a_len != b_len) || (a_len == 0) || (b_len == 0))
return false;
for (i = 0; i < a_len; i++) {
if (a[i] != b[i]) {
count++;
if (diff1_i == 0)
diff1_i = i;
else if (diff2_i == 0)
diff2_i = i;
continue;
}
letter_freq[a[i] - 'a']++;
}
qsort(letter_freq, LETTER_NUM, sizeof(int), compare_fun);
if (count == 2 && a[diff1_i] == b[diff2_i] && a[diff2_i] == b[diff1_i])
return true;
else if (letter_freq[0] >= 2)
return true;
return false;
}
int main(int argc, char *argv[])
{
printf("buddyStrings %d\n", buddyStrings(argv[1], argv[2]));
return 0;
}
链表反转
#include <stdio.h>
#include <stdlib.h>
struct node {
int data;
struct node *next;
};
struct node *list_create(int data)
{
struct node *n;
n = malloc(sizeof(struct node));
if (n == NULL) {
printf("Allocate memory failed.\n");
return NULL;
}
n->data = data;
n->next = NULL;
}
void list_insert(struct node **head, struct node *n)
{
struct node *tmp;
if (head == NULL || n == NULL)
return;
n->next = *head;
*head = n;
}
struct node *list_reverse(struct node *head)
{
struct node *cur = head;
struct node *next = NULL;
struct node *prev = NULL;
while (cur != NULL) {
next = cur->next;
cur->next = prev;
prev = cur;
cur = next;
};
return prev;
}
struct node *list_reverse_range(struct node *head, int start, int end)
{
struct node *cur = head;
struct node *next = NULL;
struct node *prev = NULL;
struct node *start_node, *bstart_node;
int i;
for (i = 1; i < start; i++) {
prev = cur;
cur = cur->next;
}
bstart_node = prev;
start_node = cur;
for (i = start; i < end; i++) {
next = cur->next;
cur->next = prev;
prev = cur;
cur = next;
}
bstart_node->next = prev;
start_node->next = cur;
return head;
}
void list_print(struct node *head)
{
struct node *tmp = head;
while (tmp != NULL) {
printf("%d ", tmp->data);
tmp = tmp->next;
}
printf("\n");
}
int main(int argc, char *argv[])
{
struct node *head, *n;
int i;
head = list_create(1);
for (i = 2; i < 10; i++) {
n = list_create(i);
list_insert(&head, n);
}
list_print(head);
head = list_reverse(head);
list_print(head);
head = list_reverse_range(head, 2, 5);
list_print(head);
return 0;
}
Last updated
Was this helpful?