Notes
main
main
  • Introduction
  • linuxKernel
    • tips
    • make_help
    • old linux
      • compile_linux0.11
      • TestEnvironment
      • load_setup
      • get_hard_data
    • list
    • plist
    • fifo
    • idr
    • xarray
    • rbtree
    • maple_tree
    • syscall
    • bitmap
    • page
    • page_flags
    • page_size
    • page mapcount
    • page refcount
    • folio
    • slub
      • proc_slabinfo
      • slub_theory
      • kmalloc_kfree
      • kmem_cache
      • slab_alloc
      • slab_free
      • proc_meminfo_SReclaimable_SReclaimable
    • vmalloc
    • brk
    • mmap
    • mremap
    • mprotect
    • madvise
    • read
    • write
    • shmem
    • huge_page
    • page_fault
    • rmap
    • lru
    • multi-gen-LRU
    • page_reclaim
    • page_cache
    • page_table
    • rcu
    • kvm
    • aarch64_boot
    • tracing_system
    • cache_coherence_and_memory_consistency
    • cpu_speculates
    • mmap_lock
    • per-vma_lock
    • cgroup
    • symbol
    • campact
    • page_ext
    • mempool
    • kernelstack
    • filesystem
    • io_stack
    • workingset
    • ioremap
    • sched_period
  • linuxDebug
    • openocd_openjtag
    • i2c_tools
    • objdump
    • addr2line
    • gdb_useage
    • debug_linux_kernel_via_gdb
    • debug_linux_module_via_gdb
    • early_boot
    • sequentially_execute
    • dynamic_debug
    • research_linuxKernel_by_patch
    • tracefs
    • ebpf
    • bpftrace
    • perf
    • flame_graph
    • crash
    • ASAN_HWASAN_MTE_check_mem_bug
    • page_owner
    • vmtouch
    • fio
    • benchmark
  • linuxSystem
    • common
      • system_version
      • procfs
      • proc_sys_vm
      • cmd_ps
      • makefile
      • file_descriptor
      • psi
      • ulimit
      • top
      • delay_accounting
    • ubuntu
      • custom_kernel
      • get_cmd_src
      • record_ssh_info
      • log
      • run_custom_script
      • repo
      • cockpit
      • nfs
      • tftp
      • misc
    • fedora
      • system_upgrade
      • custom_kernel
      • lvextend
      • yt-dlp
      • jellyfin
  • linuxDriver
    • i2c_peripherals_driver
    • spi_peripherals_driver
    • gpio_subsystem
    • IRQ_driver
    • blockIO_unblockIO_async
    • linux_own_driver
    • misc_device
    • input_device
    • timer
    • atomic_spinlock_semaphore_mutex
    • lcd
    • touch_screen
    • debugfs
    • v4l2
    • mmap
  • hardware
    • paging_mmu_pt
    • iommu
  • process_thread_scheduler
    • scheduler01
    • scheduler02
    • scheduler03
    • scheduler04
    • scheduler05
    • scheduler06
  • memory_management
    • mm1
    • mm2
    • mm3
    • mm4
    • mm5
  • input_output_filesystem
    • io_fs_01
    • io_fs_02
    • io_fs_03
    • io_fs_04
  • lock_and_lockup_detector
    • general_lock
    • hung_task
    • softLockup_hardLockup
    • crash_experiment
  • MIT_6.S081
    • 6.S081_Operating_System_Engineering
    • Schedule.md
    • Class
      • Overview
      • Administrivia
    • Labs
      • Tools
      • Guidance
      • startup
      • syscall
      • page_table
      • Calling_Convention
      • traps
    • xv6
      • xv6
    • References.md
  • qemu
    • qemu_buildroot
    • qemu_busybox.md
    • Serial.md
    • demo_mini2440
      • 0_compilation_error_summary
      • 1_compilation_steps
      • 2_operation_mode
      • 3_transplant_tools_libraries
      • 4_tools_use
      • reference_website
  • tools
    • getKernelSourceCodeList
    • nat
    • shell
    • translating
    • YouCompleteMe
    • cscope
    • global
    • vscode
    • vim
    • binary
    • markdown
    • draw
    • git
    • tig
    • tmux
    • mail_client
    • download_patchset_from_LKML
    • minicom
    • clash
  • other
    • interview
    • interview_c_base
    • know_dontknow
    • Stop-Ask-Questions-The-Stupid-Ways
    • How-To-Ask-Questions-The-Smart-Way
    • docker
    • buildroot
    • rv32_to_rv64
Powered by GitBook
On this page
  • const
  • 进程的内存布局
  • union
  • 大小端模式
  • 用C语言实现冒泡排序
  • 不调用库函数,实现strcpy函数的功能
  • 用C语言实现判断大小端的程序
  • 不调用库函数,实现atoi函数的功能,字符串转整形
  • 用C语言实现字符串反转功能
  • 获得字符频次唯一的最小删除次数
  • 亲密字符串
  • 链表反转

Was this helpful?

  1. other

interview_c_base

const

第一种情况:

const int a = 8;
int const b = 9;

// a = 7; /* ERROR */

这两种写法是一样的,表示a和b都是常量,不可改变,所以一定要给变量初始化,否则之后就不能再进行赋值了

第二种情况:

const int *p;
or
int const *p;

int a = 9;
int b = 10;

p = &a;

// *p = 8; /* ERROR */
a = 8;
p = &b;

常量指针,表示p指向的内容是常量。需要注意两点:

  1. 常量指针指不能通过这个指针改变变量的值,但是还是可以通过其他的引用来改变变量的值的。

  2. 常量指针指不能通过这个指针改变变量的值,但是这并不是意味着指针本身不能改变,常量指针可以指向其他的地址。

第三种情况:

int a = 9;
int b = 10;
int * const p = &a;

*p = 8;
// p = &b; /* ERROR */

指针常量,表示指针p是个常量,它本身不可改变。需要注意的是,指针本身不可变,但指向的对象可变。

第四种情况:

int a = 9;
const int * const p = &a;

a = 8;

指向常量的指针常量,表示指针本身不可变,也不能通过指针修改所指向地址的内容。需要注意的是,依然可以通过其他引用修改该指针指向地址的内容。

进程的内存布局

section
说明

stack

存放局部变量

head

存放由malloc分配

data

存放初始化的全局变量

bss

存放未初始化的全局变量

text

存放代码

需要注意:

  • 未初始化的全局变量,相当于初始化为零的全局变量,存放 bss section

  • 字符串存放在 text section

union

共用体的所有成员占用同一段内存,修改一个成员会影响其余所有成员

共用体占用的内存等于最长的成员占用的内存

## 注意:PC机是小端模式
$ cat test.c
#include <stdio.h>

union data{
    int n;
    char ch;
    short m;
};

int main(){
    union data a;

    printf("%d, %d\n", sizeof(a), sizeof(union data));

    a.n = 0x40;
    printf("%X, %c, %hX\n", a.n, a.ch, a.m);
    a.ch = '9';
    printf("%X, %c, %hX\n", a.n, a.ch, a.m);
    a.m = 0x2059;
    printf("%X, %c, %hX\n", a.n, a.ch, a.m);
    a.n = 0x3E25AD54;
    printf("%X, %c, %hX\n", a.n, a.ch, a.m);

    return 0;
}

$ ./a.out
4, 4
40, @, 40
39, 9, 39
2059, Y, 2059
3E25AD54, T, AD54

大小端模式

大端模式,是指数据的高字节保存在内存的低地址中,而数据的低字节保存在内存的高地址中

小端模式,是指数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中

下面以unsigned int value = 0x12345678为例,分别看看在两种字节序下其存储情况,我们可以用unsigned char buf[4]来表示value

value
内存地址
小端模式存放内容
大端模式存放内容

buf[0]

0x4000

0x78

0x12

buf[1]

0x4001

0x56

0x34

buf[2]

0x4002

0x34

0x56

buf[3]

0x4003

0x12

0x78

用C语言实现冒泡排序

#include <stdio.h>

#define SIZE 5

int main(int argc, char **argv)
{
	int test[SIZE] = {9, 50, 3, 250, 8};
	int i, j, tmp;

	for(j=1; j<SIZE; j++)
	{
		for(i=0; i<(SIZE-j); i++)
		{
			if(test[i] > test[i+1])
			{
				tmp = test[i];
				test[i] = test[i+1];
				test[i+1] = tmp;
			}
		}
	}

	for(i=0; i<SIZE; i++)
		printf("%d ", test[i]);

	return 0;
}

不调用库函数,实现strcpy函数的功能

#include <stdio.h>

char *strcpy(char *dest, const char *src)
{
	char *tmp;

	if(dest == NULL || src == NULL)
		return NULL;

	tmp = dest;
	while((*dest++ = *src++) != '\0');

	return tmp;
}

int main(int argc, char **argv)
{
	char *src = "test";
	char dest[1024];

	strcpy(dest, src);
	printf("%s\n", dest);

	return 0;
}

用C语言实现判断大小端的程序

#include <stdio.h>

union data {
	unsigned int i;
	unsigned char c;
};

int main(int argc, char **argv)
{
	union data test;

	test.i = 0x1;
	if(test.c == 0x01)
		printf("Little-endian\n");
	else
		printf("Big-endian\n");

	return 0;
}

不调用库函数,实现atoi函数的功能,字符串转整形

#include <stdio.h>
#include <limits.h>

int myatoi(char *s)
{
	char sign = '+';
	int tmp = 0;
	unsigned int value = 0;

	while(*s == ' ')
		*s++;

	if (*s == '+' || *s == '-')
		sign = *s++;


	while (*s >= '0' && *s <= '9') {
		tmp = *s++ - '0';
		value = value * 10 + tmp;

		if (value >= INT_MAX)
			return sign == '+' ? INT_MAX : INT_MIN;
	}

	return sign == '+' ? (int)value : -(int)value;
}

int main(int argc, char *argv[])
{
	printf("str %s, INT_MAX %d, INT_MIN %d\n", argv[1], INT_MAX, INT_MIN);

	printf("int = %d\n", myatoi(argv[1]));

	return 0;
}

用C语言实现字符串反转功能

#include <stdio.h>
#include <string.h>

void char_swap(char *a, char *b)
{
	char tmp;

	tmp = *a;
	*a = *b;
	*b = tmp;
}

void string_reverse(char *s)
{
	int len = strlen(s);
	int i;

	printf("str %s\n", s);

	for (i = 0; i < len/2; i++)
		char_swap(&s[i], &s[len - 1 - i]);

	printf("str %s\n", s);
}


int main(int argc, char *argv[])
{
	char buf[] = "123yabc";

	string_reverse(buf);

	return 0;
}

获得字符频次唯一的最小删除次数

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define LETTER_NUM	26
#define STR_MAX_NUM	100001

int compare_fun(const void *a, const void *b)
{
	return (*(int *)b - *(int *)a);
}

int min_delete(char *s)
{
	int letter[LETTER_NUM] = {0};
	int flags[STR_MAX_NUM] = {0};
	int len = strlen(s);
	int min_delete_bytes = 0;
	int i;

	for (i=0; i<len; i++)
		letter[*s++ - 'a']++;

	qsort(letter, LETTER_NUM, sizeof(int), compare_fun);


	for (i=0; i<LETTER_NUM; i++) {
		if (letter[i] == 0)
			break;

		if (flags[letter[i]] == 0) {
			flags[letter[i]] = 1;
			continue;
		}

		min_delete_bytes++;
		letter[i]--;

		if (letter[i] == 0)
			break;

		if (flags[letter[i]] == 0) {
			flags[letter[i]] = 1;
			continue;
		}
	}

	return min_delete_bytes;
}

int main(int argc, char *argv[])
{
	printf("min_delete_bytes %d\n", min_delete(argv[1]));

	return 0;
}

亲密字符串

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>
#include <string.h>

#define LETTER_NUM	26

int compare_fun(const void *a, const void *b)
{
	return (*(int *)b - *(int *)a);
}

bool buddyStrings(char *a, char *b)
{
	int a_len = strlen(a);
	int b_len = strlen(b);
	int i, count = 0, diff1_i, diff2_i;
	int letter_freq[LETTER_NUM] = {0};

	if ((a_len != b_len) || (a_len == 0) || (b_len == 0))
		return false;

	for (i = 0; i < a_len; i++) {
		if (a[i] != b[i]) {
			count++;

			if (diff1_i == 0)
				diff1_i = i;
			else if (diff2_i == 0)
				diff2_i	= i;

			continue;
		}

		letter_freq[a[i] - 'a']++;
	}

	qsort(letter_freq, LETTER_NUM, sizeof(int), compare_fun);

	if (count == 2 && a[diff1_i] == b[diff2_i] && a[diff2_i] == b[diff1_i])
		return true;
	else if (letter_freq[0] >= 2)
		return true;

	return false;
}


int main(int argc, char *argv[])
{
	printf("buddyStrings %d\n", buddyStrings(argv[1], argv[2]));

	return 0;
}

链表反转

#include <stdio.h>
#include <stdlib.h>

struct node {
	int data;
	struct node *next;
};

struct node *list_create(int data)
{
	struct node *n;

	n = malloc(sizeof(struct node));
	if (n == NULL) {
		printf("Allocate memory failed.\n");
		return NULL;
	}

	n->data = data;
	n->next = NULL;
}

void list_insert(struct node **head, struct node *n)
{
	struct node *tmp;

	if (head == NULL || n == NULL)
		return;

	n->next = *head;
	*head = n;
}

struct node *list_reverse(struct node *head)
{
	struct node *cur = head;
	struct node *next = NULL;
	struct node *prev = NULL;

	while (cur != NULL) {
		next = cur->next;
		cur->next = prev;
		prev = cur;
		cur = next;
	};

	return prev;
}

struct node *list_reverse_range(struct node *head, int start, int end)
{
	struct node *cur = head;
	struct node *next = NULL;
	struct node *prev = NULL;
	struct node *start_node, *bstart_node;
	int i;

	for (i = 1; i < start; i++) {
		prev = cur;
		cur = cur->next;
	}

	bstart_node = prev;
	start_node = cur;

	for (i = start; i < end; i++) {
		next = cur->next;
		cur->next = prev;
		prev = cur;
		cur = next;
	}

	bstart_node->next = prev;
	start_node->next = cur;

	return head;
}

void list_print(struct node *head)
{
	struct node *tmp = head;

	while (tmp != NULL) {
		printf("%d ", tmp->data);
		tmp = tmp->next;
	}
	printf("\n");
}

int main(int argc, char *argv[])
{
	struct node *head, *n;
	int i;

	head = list_create(1);

	for (i = 2; i < 10; i++) {
		n = list_create(i);
		list_insert(&head, n);
	}
	list_print(head);

	head = list_reverse(head);
	list_print(head);

	head = list_reverse_range(head, 2, 5);
	list_print(head);

	return 0;
}
PreviousinterviewNextknow_dontknow

Last updated 3 months ago

Was this helpful?